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Abstract
A new methodology in which linear fractional transfor-

mation uncertainty bounds are directly constructed for use
in robust control design and analysis is proposed. Existence
conditions for model validating solutions with or without
repeated scalar uncertainty are given. The approach is based
on minimax formulation to deal with multiple non-repeated
structured uncertainty components subject to �xed levels of
repeated scalar uncertainties. Input directional dependence
and variations with di�erent experiments are addressed by
maximizing uncertainty levels over multiple experimental data
sets. Preliminary results show that reasonable uncertainty
bounds on structured non-repeated uncertainties can be iden-
ti�ed directly from measurement data by assuming reasonable
levels of repeated scalar uncertainties.

1 Problem De�nition

Figure 1 shows measured input, u 2 Cnu and output,
y 2 Cny , across a true plant. These inputs and outputs
are assumed to be discrete Fourier transforms obtained from
discrete time records. The corresponding output, ~y, from
an upper linear fractional transformation model, Fu(P;�),
depends on a given augmented plant, P , and an assumed
structured uncertainty of the form

� = blk{diag(�1; . . . ;��); �i 2 C
mi�ni ; i 2 T� (1)

where T� := (1; . . . ; � ). Consider a set of measurements from
ne independent experiments whose inputs and outputs are

denoted by (u(j); y(j)) for the jth experiment. De�ne the set

Tne := fu(j); y(j) : j = 1; . . . ; neg (2)

Henceforth, consider input and output pairs that satisfy
(u; y) 2 Tne . At each frequency, the signals � and � depend
on input vector u and in particular its direction so that a
ratio of their norms will also be dependent on the particular
input direction. To account for this dependence, consider
satisfying model validating conditions [1] - [5] for all available
experiments:

� = �� (3)

� = P11� + P12u (4)

ey = y � P21� � P22u = 0; 8(u; y) 2 Tne (5)

The basic problem we address is to determine smallest bounds
among all uncertainties which are model validating with re-
spect to available input/output measurements. From equation
(3), the uncertainty bound can be written as a ratio of 2-norms
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Figure 1: Block diagram for uncertainty identi�cation

Of course �ctitious signals � and � cannot be measured so it is
necessary to look at their dependence on real signals u and y
and their transmission through the system P . We consider a
constant matrix problem; i.e., the supremum is taken at each
frequency and is due to the directional dependence of ratio of
2-norms.

Let col(�1; � � � ; �� ) and col(�1; � � � ; �� ) be the partition-
ing of the vectors � and � which conform to the block diagonal
partition of � in equation (1). For convenience, assume that
all repeated scalar blocks are grouped into the �rst r blocks
in �. Then, equation (3) becomes:8>>>>>>>><
>>>>>>>>:

�1
...

�r
�r+1
...

��

9>>>>>>>>=
>>>>>>>>;

= blk-diag(�;�r+1; . . . ;�� )

8>>>>>>>><
>>>>>>>>:

�1
...

�r
�r+1
...

��

9>>>>>>>>=
>>>>>>>>;

(7)

where � := blk-diag(�1In1 ; . . . ; �rInr), and �i 2 F and �i

are de�ned in equation (1).
Given a model validating set, consider choosing a \small-

est" size uncertainty in terms of

��(�) = max
i2T�

��(�i); (8)

i.e., minimum over maximum over all components. A po-
tential hazard with this viewpoint is the numerical values of
the component uncertainties may not be of equal physical
relevance. This is particularly true for more complex systems
where there is usually a mixture of parametric (repeated or
not) and nonparametric uncertainties including unmodeled
dynamics. In practice, more uncertainty parameters are used
(as compared to the \true" set of uncertain parameters) to
su�ciently satisfy existence of model validating solutions.
This means that robust identi�cation problems generally lead
to underdetermined problems, which appears to require the
selection of physically signi�cant uncertainty con�gurations
and levels from all model validating sets. For the above
reasons, we treat the parametric scalar uncertainties which
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are often repeated separately from component unstructured
uncertainties.

2 Existence of �, �

For each experiment, consider the existence of � which is an
unconstrained by the structure in the uncertainty block and
satisfying equation (5) which is rewritten as

P21� = y � P22u := eoy; (u; y) 2 Tne (9)

Lemma 1: For each (u; y) 2 Tne , a � exists which
satis�es equation (5) if and only if

eoy 2 Im(P21) 2 (10)

Lemma 1 is a test which gives a yes or no answer. If
the test indicates that a solution exists, then all � satisfying
equation (5) can be written as

� = P+
21e

o
y +N21 (11)

where eoy is determined by the particular experiment using

equation (9), N21 is chosen so that its columns span Ker(P21),
and  2 Cn is arbitrary. Given any � from equation (11),
the complementary signal � can be computed from equation
(4).

Lemma 1 de�nes the conditions under which the output
nominal error eoy can be cancelled by the �ctitious signals

P21� from the uncertainty block. The Lemma presupposes
that the �ctitious signal � is unconstrained by the structure
in the uncertainty block. Note that the null freedom  is
an independent variable. In fact, any choice of  for a given
experiment gives a corresponding pair of � and � which satisfy
equations (4) and (5).

If the condition in Lemma 1 holds, the �ctitious signals
satisfying equations (4) and (5) can be written as�

�

�

�
=

�
b

a

�
+

�
P11
I

�
N21 (12)

where

b := P11P
+
21e

o
y + P12u (13)

a := P+
21e

o
y (14)

It turns out that for general complex block diagonal uncer-
tainty structure with no repeated scalar blocks, for given � and
�, a � satisfying equation (3) always exists [1]. Consequently
we state the following result which was also obtained earlier
in [4] in a more general context.

Theorem 1 (no repeated scalar block)
Let (u; y) 2 Tne . Then a corresponding model validating

uncertainty set, �, �, and �, satisfying equations (3) to (5)
exists if and only if eoy 2 Im(P21): 2

If � contains repeated scalar blocks, then the condition
in Theorem 1 becomes only a necessary condition for model
validation. So, with repeated scalar blocks we ask, \Among
all pairs (�; �), satisfying equation (12), does a pair exist that
also satis�es equation (3)?" Given any pair (�; �), �r+1, . . .,
�� always exist, so we need to consider only the existence
of the �rst r blocks, �1In1 , . . ., �rInr . Let us denote �n :=Pr

i=1 ni = �m :=
Pr

i=1mi and de�ne

Z :=
�
��; 0�n�(n��n); I �m; 0 �m�(m� �m)

�
(15)

Theorem 2 (with repeated scalar block)
Suppose the condition in Theorem 1 holds. Let (u; y) 2

Tne. Then, a model validating set �, �, and � exists if and
only if there exists �1,. . .,�r , and  such that�

b

a

�
+

�
P11
I

�
N21 2 Ker(Z(�1; . . . ; �r)) 2 (16)

Theorem 2 is a constraint on  to limit � and � that
satisfy the repeated scalar structure implicit in equation (7).
Note that Z has full row rank independent of the set �1,. . .,�r,
so that

dim(Ker(Z)) = n +m � �n (17)

Note that although the rank of Z does not change as long as
�i 6= 0, 8i 2 Tr , the bases changes with �i, i 2 Tr, due to the
repeated scalar uncertainty structure. Theorem 2 results in
either a yes or no answer to the existence question. However,
as a test, it is complicated because Z is dependent on the
values of the set �1,. . .,�r, which is as yet undetermined.

3 Uncertainty Bound

3.1 Uncertainty Bound Inequality

From equation (8), it is of interest to note that

k�ik2
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� sup
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i

k�0ik2
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= sup
�0

i

k�i�
0

ik2
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:= ��(�i); i 2 T� (18)

With physical signals, the best we can expect to do is to
estimate the supremum by a maximum over all available
experiments, i.e.,

��(�i) � max
(u;y)2Tne

k�ik2
k�ik2

:= max
(u;y)2Tne

�i := ��i; i 2 T� (19)

For each experiment, the free null parameter  (and therefore
� and �) can be chosen that minimizes the ratio of 2-norms
in equation (19). The maximum over all experiments in
equation (19) can be determined after solving for minimum
ratio with respect to  for each experiment, independently.
Hence, consider �rst the following minimization problem for
each experiment:

min
 

k�i( )k2
k�i( )k2

:= �i� i 2 T� (20)

The asterisk in equation 20 refers to the minimum 2-norm
ratio with respect to  . To avoid a ratio of square root of
quadratics in  , consider the condition

Ji := k�i( )k
2
2 � �2i k�i( )k

2
2 � 0; i 2 T� (21)

Notice that �i� in equation (20) is the smallest �i making
equation (21) true for all  . A violation of inequality (21)
implies that �i is not an upper bound on the ratio of signal
norms, i.e., it fails as an uncertainty bound. For large �i,
equation (21) is more likely to be satis�ed, which makes intu-
itive sense. Finally, notice that in equation (20),  generally
in
uences all components �i, �i, i 2 T� . This motivates the
minimax formulation.

3.2 Minimax problem

The problem for each experiment then becomes: �nd the
smallest bound set, ��i�, i 2 T� , such that inequality (21) is
satis�ed and subject to model validation constraints on �i and



�i. The signal  is a free parameter from excess uncertainty
degrees of freedom that can be judiciously chosen for each
experiment to minimize Ji for all i. The multiple objective
nature is addressed by formulating it as a particular type of
minimax problem.

Using Theorem 2, we can parameterize the set of all
signal pairs, (�; �) that satis�es model validation for each
experiment. This set corresponds to all  , and �1,. . .,�r that
satis�es equation (16) which can be rewritten as

(��P11�n +N21�n) = �b�n � a�n (22)

and (�)�n denotes the �rst �n rows of (�). Notice from equation
(22) that it depends only on the repeated scalar uncertainties.

In our approach, we choose to restrict a model validating
set parameterized by the set  , and �1,. . .,�r that is also
bounded by

j�ij � ��i; i = 1; . . . ; r (23)

where ��i 2 R which denotes the ith repeated scalar uncer-
tainty bound as chosen a priori by an engineer. With the
remaining freedom in the restricted model validating set, we
seek a smallest uncertainty bound for the remaining nonre-
peated uncertainty components (i = r + 1; . . . ; � ).

We summarize the problem for each experiment as

OP1 min
�1;...;�r; 

( max
i=r+1;...;�

f��2i g)

subject to equations (22), (23), and

���2i kbni + P11niN21 k
2
2 + kami + N21mi

 k22 � 0;

i = r + 1; . . . ; �

where (�)ni and (�)mi refers to the ith block of rows associated
with �i 2 Cmi�ni of dimensions ni and mi respectively
for matrix (�). The possible non-smoothness in the minimax
problem in OP1 can be avoided by recasting the problem for
each experiment as

OP2 min
�1;...;�r;��2r+1;...;

��2� ; ;


 (24)

subject to equations 22,23, and

���2i kbni + P11niN21 k
2
2 + kami + N21mi

 k22 � 0;

i = r + 1; . . . ; � (25)

��2i � 
 � 0; i = r + 1; . . . ; � (26)

The dimensions of the equations are as follows: equation
(22) consists of �n complex equalities, equation (23) consists
of r real inequalities, equation (25) consists of � � r real
inequalities, and equation (26) consists of � � r real inequal-
ities. Equation (22) de�nes the admissible set of �ctitious
signals parameterized by  that satis�es the repeated scalar
uncertainty structure. Equation (25) de�nes the dependence
of nonrepeated uncertainty bounds on the above admissible set
of �ctitious signals. Finally, condition (23) speci�es the bound
on repeated scalar uncertainties while condition (26) is used
to de�ne a bound on the maximum nonrepeated uncertainty
component for minimax optimization purpose.

3.3 No repeated scalar block

For the case when there are no repeated scalar blocks (r = 0),
OP2 reduces to

min
��2
1
;...;��2� ; ;



 subject to conditions (25) and (26):

Note from condition (25) that for any �xed  , the smallest ��2i
holds when condition (25) becomes an equality, i.e.,

��2i =
kami +N21mi

 k22
kbni + P11niN21 k22

; i 2 T� (27)

The OP2 problem for each experiment reduces to the follow-
ing:

OP3 min
 ;



 (28)

subject to

��2i =
kami +N21mi

 k22
kbni + P11niN21 k22

� 
; i 2 T� (29)

In OP3, the null freedom vector  is used to minimize the
maximum uncertainty bound. Note that for each experiment
(or ne = 1 case), OP3 is equivalent to the earlier results using
a minimum norm model validating (MNMV) formulation as
given in [1]-[2].

3.4 Compuational Algorithm

For numerical solutions, we suggest the following steps:

Step 1: Choose repeated scalar bounds ��i, i = 1; . . . ; r.
Step 2: Solve optimization problem OP2 for each exper-

iment.
If OP2 results in an infeasible domain, increase appro-

priate ��i. Redo Step 2 until solution exists.
Step 3: Compute worst bounds for nonrepeated uncer-

tainty components over all experiments.

��i = max
Tne

��i�; i = r + 1; . . . ; �

Step 4: Fit uncertainty components using stable low
order rational functions over all frequencies.

Note that in Step 4, an interactive utility program such
as drawmag, a �-Tools command [6] can be used. Analytical
sensitivities for all constraint functions are derived and used
but not shown due to lack of space. All complex variables and
equations are expanded out in real variable form to obtain the
derivatives.

4 Illustrative Example

Consider a simple dyamical system given in [5] but with two
force inputs and two outputs. The system consists of two
structural modes resulting in four state variables. The system
is discretized at 50 Hertz assuming a zero order hold at both
inputs. The fourth order discrete A matrix for this system
has the form

A = blk-diag(A1; A2) (30)

where Ai is a 2 by 2 matrix of the form

Ai :=

�
Re(zi) �Im(zi)
Im(zi) Re(zi)

�
(31)

To establish a truth model which is then used to simulate
measurements, we perturb the �rst structural mode by the
following

A1 = Ao1 + �1

�
1 0
0 1

�
+ �2

�
0 �1
1 0

�
(32)



where �1 and �2 corresponds to the perturbations in the real
and imaginary components of the �rst discrete eigenvalue,
respectively. The perturbation matrices for this choice of
parametric uncertainties are of rank two, i.e., repeated mul-
tiplicity of order 2 for each scalar parameter. Of course in
order to preserve the complex conjugate pair property of the
set of perturbed plants, both �1 and �2 must be real numbers.
For the simulated measurements, a small level of independent
Gaussian white noise was included at both outputs. A single
time record was divided into two segments for use as two
independent experiments (ne = 2).

4.1 Nominal and Uncertainty Structure

Consider a nominal model consisting of only the �rst mode
with parametric perturbations set to �1 = �2 = 0. Hence, the
nominal model contains both parametric error (in the �rst
mode) and unmodeled dynamics (truncated second mode).
Figure 2 shows the poles of the true plant corresponding to the
two structural modes and an approximation of the �rst pole
by the nominal model. This parametric error is represented
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Figure 2: True(�), nominal(2) poles.

in the state space form [7]

h
A B

C D

i
=

h
Ao Bo

Co Do

i
+

2X
i=1

�i

h
Ei

Fi

i �
Gi Hi

�
(33)

where E1 = G1 = G2 = I2�2, F1 = H1 = F2 = H2 =
02�2, and E2 = [0;�1; 1; 0].

Figure 3 shows the interconnection structure of the
parametric uncertainty with an additive uncertainty from
two inputs to two outputs. Figure 4 shows the frequency
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Figure 3: Nominal and uncertainty interconnection.

response of the true model, nominal, and a di�erence (true
- nominal), from input 1 to both outputs. Notice that the
di�erence between the nominal and true system (dot) is the
most signi�cant at the two structural resonant frequencies.

The �rst error peak is due to parametric error in the �rst
mode and the second due to truncated second mode.
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Figure 4: Frequency response of True(�), Nominal(��),
and Additive error(� � �).

4.2 Parametric Study

Table 1 show the true and three di�erent cases of assumed
bounds of repeated scalar uncertainties. These three assumed
sets of uncertainty bounds for the pair of repeated scalar
uncertainties are used to compute the corresponding smallest
additive uncertainties. Notice that Case 1 greatly underes-
timates the true values while Case 3 greatly overestimates
it. On the other hand, Case 2 represents a level near the
true parameter levels, i.e., a good guess. The optimization
problem (OP2) for all three cases were solved using a Sequen-
tial Quadratic Programming algorithm found in MATLAB
Optimization Toolbox [8].

Table 1: True and assumed parametric uncertainties.

�1 �2

True .005 .01

Case 1 .001 .001

Case 2 .01 .01

Case 3 .1 .1

4.3 Discussion of results
Figures 5 to 7 show the identi�ed uncertainty bounds for un-
modeled dynamics (�) while �gure 8 shows the corresponding
curved-�tted stable low order rational functions for additive
uncertainties in all three cases. It appears that when the
assumed parametric uncertainty bound is very small relative
to true values (Case 1, �gure 5), the additive uncertainty tries
to capture a large error incurred by the optimistic level of as-
sumed parametric uncertainty. When the assumed parametric
uncertainty level is near true levels (Case 2, �gure 6), the
additive uncertainty show much smaller levels at frequencies
where the parametric errors are expected to be signi�cant.
This reduction of the identi�ed unmodeled dynamics at these
frequencies is even more pronounced in Case 3 (�gure 7) where
the assumed parametric uncertainty level is more than an
order of magnitude larger than true values.

In all three cases, the identi�ed levels for the unmodeled
dynamics is unchanged to a large extent. This observation



is consistent with the expectation that in general, parametric
changes for a structural mode do not signi�cantly a�ect other
structural modes.

Finally, note that from a more detailed parametric study,
a smaller level of parametric uncertainty level could be de-
duced. This \minimal" parametric uncertainty level corre-
sponds to a threshold level whereby a further decrease in
the parametric uncertainty level will give a large increase in
unmodeled dynamics uncertainty level. Of course, a priori
physical knowledge of the system under investigation will
generally help in determining this optimal tradeo� point.
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Figure 5: Case 1: Additive unc bounds (�) and SV
frequency responses - True(�), Nominal(��), True-
Nominal(� � �)
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Figure 6: Case 2: Additive unc bounds (�) and SV
frequency responses - True(�), Nominal(��), True-
Nominal(� � �)

5 Conclusion

A new algorithm is presented for identifying both non para-
metric uncertainties and repeated scalar uncertainties. The
algorithm uses a minimax search which is constrained to all
�ctitious input/output uncertainty signal sets that zero out
output errors for a nominal model. This development extends
an earlier method involving a minimum norm model validating
approach.
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Figure 7: Case 3: Additive unc bounds (�) and SV
frequency responses - True(�), Nominal(��), True-
Nominal(� � �)
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